In Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Magnetite Electrodeposition by Scanning Electrochemical Microscopy.

نویسندگان

  • Mohsin A Bhat
  • Nikoloz Nioradze
  • Jiyeon Kim
  • Shigeru Amemiya
  • Allen J Bard
چکیده

Electrodeposition is an important approach that can produce functional compound materials by assembling multiple species at the electrode surface. However, a fundamental understanding of the electrodeposition mechanism has been limited by its complexity and is often gained only through ex situ studies of deposited materials. Here we report on the application of scanning electrochemical microscopy (SECM) to enable the in situ, real-time, and quantitative study of electrodeposition and electrodissolution. Specifically, we electrodeposit magnetite (Fe3O4) from an alkaline solution of Fe(III)-triethanolamine as a robust route that can prepare this magnetic and electrocatalytic compound on various conductive substrates. The powerful combination of SECM with cyclic voltammetry (CV) at a gold substrate reveals that the electrodeposition of magnetite requires the preceding adsorption of Fe(II)-triethanolamine on the substrate surface and, subsequently, is mediated through the highly complicated ECadsCmag mechanism, where both chemical steps occur at the substrate surface rather than in the homogeneous solution. SECM-based CV is obtained under high mass-transport conditions and analyzed by the finite element method to kinetically resolve all steps of the ECadsCmag mechanism and quantitatively determine relevant reaction parameters. By contrast, the adsorbed Fe(II) intermediate is unresolvable from co-deposited magnetite in situ by other electrochemical techniques and is undetectable ex situ because of the facile air oxidation of the Fe(II) intermediate. Significantly, SECM-based CV will be useful for the in situ characterization of various electrodeposited compounds to complement their ex situ characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-step Cathodic Electrochemical Synthesis and Characterization of Dextran Coated Magnetite Nanoparticles

In this research, a simple and efficient cathodic electrochemical deposition (CED) route wasdeveloped for the preparation of magnetite nanoparticles (NPs) in an aqueous media. Thesurface of magnetite NPs was also coated for the first time via an in situ procedure during theCED process. In this method, initially, the Fe3O4 NPs (with size ~10 nm) were prepared from theFe2+/Fe3+ chloride bath thro...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

One-pot synthesis and characterization of biopolymer – Iron Oxide nanocomposite

The magnetite (Fe3O4) – agar nanocomposite was prepared by co-precipitation of Fe (III) and Fe (II) ions for the first time. The obtained samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. FT-IR results confirm the formation of Fe3O4 nanoparticles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 139 44  شماره 

صفحات  -

تاریخ انتشار 2017